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Statistical Errors in Digital Estimation of

Probability Density Functions
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Abstract

An assessment of the statistical errors occurring in the digital
estimation of probability density function maybe required in a
variety of applied disciplines; eg. engineering, managementand
maintenance planning. In special, for such purposes, this paper
studies the statistical errors in the computer estimation of
probability density functions, by simulation of correlated and
uncorrelated data. The estimate error, being composed of a
random portion and a bias term is analyzed and applied to the
cases of uniform and standard Gaussian density functions. Then
further investigation is undertaken by employing simulated data

with various conditions.

Intreduction
The probability density function is one of the main types of
statistical criteria used to describe the basic properties of random

data. Hance, in the study of random data, an estimation of the

1 - Professor of Shiraz University



VYVA ol - Ao led - Cu pe A \YA

probability density function may be required. In practice,
especially with the aid of digital computers, this is accomplished
by dividing an appropriate range into a number of intervals and
observing a finite sample size. The accuracy of the estimation
then depends on the sample size and the window size.

The digital procedure for probability density estimation is given
in various sources, €. g. [1], [2], [3] and a brief account of it may
be found in Appendix A.

Consider an estimate p(x) obtained for a true probability
density function p(x). For continuous signals of bandwidth B, the
normalized mean square error of the estimate, €, , is given by the

following equation [2]:

2 4 "
2 C w'  p"(X) 2
=0 + —[ 1
=0 IBTW pe) T 576 L p() | (D

Where W is the window size and p"(x) denotes the second
derivative of p(x) with respect to x. In the above equation. Which
is given for a continuous record of length T, ¢ is a constant
depending on the autocorrelation function of the signal. For
discrete uncorrelated data. 2BT may be replaced by the number
of samples and a value 1.0 has been given for ¢ as would be
expected theoretically [2].

The above formula, however, seems to require further study
with regards to the effects of the second term and variations of

the error with sample and window sizes, for probability density
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estimates of discrete time series.

In this paper, the case of discrete data is considered. The
estimate error is analysed and its expression is approached. This
is, basically, in accordance with the analysis concerning the
continuous case. It is then applied to the uniform and standard
Gaussian probability densities and shown that the second term
(which includes second order differential) is zero for the former
case and negligible for the latter. Further, the probability density
estimate error is studied by simulations on a digital computer and

comparison of theoretical and empirical results.

Analysis of the Estimation Errors
The digital estimator for a probability density function is given
by equation (A.2.). It is known that this estimator is biased and

the bias of the estimate is given [2] as:

2
b [pC9] = 2 P60 @

It is also shown [2] that the variance of the estimate, based

upon observing N independent sample values, is given by:

Var [p(x)] = —I%%Vl 3)

The mean square error can be written as:
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E [(p(x) - p(x)*] = Var [p(x)] + b* [p(x)] (4)

Where E denotes the expectiation operator. This, after

substitution from equations (2) and (3), yields:

4
E (9 - o) = 28 + X [P )

576

Hance, the normalized mean square error of the estimate is:

_ EI() - pe)] 1 P00
= X+ 576 [p<x>] ©)

The derivation of the above equation is based upon observing
Nindependent sample values. If the sample are correlated then
this expression is not appropriate and it is sometimes suggested
that, in this case, the expression is replaced by:

2 c2

Epm E

p'(x) 2
NWp(x) 576 [ p(x) r @)

Where N is the sample size and the constant c is dependent
upon the autocorrelation function of the data and the sampling
period [2]. However, when N represents the number of
independent samples then equation (7) will reduce to (6). with c

being equal to unity.
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Appliction to the Uniform Probability Density Function
Consider a uniform probability density function in the range

(0,1), for which:

px)=1,0=x=1 (8)

= (), otherwise

Since p"(x) = 0, the bias term is zero and the normalized root
mean square error becomes the same as the normalized standard
error. Hence, equation (7) will not include the bias term and will

reduce to:

_ — C
fn = & = TR_W ©)

Where ¢, is the normalized standard error or the relative error.
Application to the Gaussian Probability Density Function

Consider a Gaussian density funciton in the standard from, i.e.

with zero mean and unit varicance, for which:

-.- 2
p(x) = (V27)" exp(5) (10)
This, when differentiated twice with respect to x gives:

[P"COT = [(1 - %*) p())° (11



The Maximum value of which occurs at x = 0 and Is:
(12)

Hance, from equation (2) the maximum value of the square of the

bias term is :

w4

. 21 —
Max {b” [p (x)]} = 157

(13)

For a Gaussian distribution, about 99.9% of the data fall in the
range (- 30, 30), where o' is the standard deviation [4}; thus, for
data with unit standard deviation, dividing this practical range into

M; slots gives the window size as:

6
W=_— 14
M. (14)
Then, equation (13) gives:
n 1296
Max {b’ = 5
x {b” [p(x)]} 1152 aMT (13)
If the range has been divided into, say, ten slots, then:
Max {b* [p(x)]}= (107%) (16)

Therefore, the bias term appean to be negligible. The
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normalized root mean square error than becomes the same as the
normalized standard error. Hance, equation (7) may be reduced

to:
= & = (17)
or equivalently:

[BX) - pR* _ _c (18)
p(x) NW

Minimum and Maximum Errors

The minimum and maximum values of the estimate errors for a
standard Gaussian density, may be evaluated from equation (17),
as follows. This equation shows that the relative error is a
minimum when p(x) is a maximum and vice-versa. The maximum

value of p(x), from equation (10), occurs at x=0 and gives:

1.58c (19)

It x = * 30 is taken as an upper bound of practical interest

then, using equations (10) and (17):

15.02
fmx = R (20)

Hence, for the same sample and window size:
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fmax .

n
<
(9]

(21
€min
Simulation Studies

The digital procedure for probability density estimation was
programmed on a digital computer. Independent random
variables with a uniform distribution in the range (0,1),
independent random variable with a standard Gaussian
distribution and also correlated Gaussian processes were
simulated on a digital computer, according to the methods
described in [5], [6], [7]. The probability density functions were
estimated, in the cases of uncorrelated data with various window
and sample sizes, and in the cases of correlated data for different
sampling periods.

For the uniform density case, sample sizes of, 1000, 5000 to
100000 (in steps of 5000) were chosen. Different window sizes
were used and, in each case, the estimation error was calculated

according to:

M
£ = /ML = [p(n) - 17 (22)
5 p=1

M; is the number of slots, p(n) is the estimate of the
probability density in the n'"" slot and also 1 inside the brackets
represents the true value of the uniform density function. For
each window size, the relative error ¢, was plotted against the
sample size and compared with the error expected theoretically,

as given by equation (9); in this equation the constant ¢ was put
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equal to unity, since independent random numbers were being
used.

Furthermore, in each case, the quantity s,/&T\Z was also
calculated, where N is the sample size and W = K}I—- is the window
size (it is noted that the density function is in thes range 0 to 1).
This would give the proportionality constant, ¢, which is expected
to be about unity.

The simulation results, with the range divided into 20 slots, are
shown in Figures 1 and 2. Figure 1 shows &, plotted against the
sample size and Figure 2 shows &, VNW plotted versus the

sample size. Using 30,40 and 50 slots, the corresponding results

are shown in Figures 3, 4, 5, 6 and 7, 8 respectively.
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Fig. 1 - Relative error versus sample size, for uniform probability density estimates.

Number of slots = 20
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Fig. 2 - Relative error proportionality constant versus sample size, for uniform probability density

estimates. Number of slots = 20
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Fig. 3- Relative error versus sample size, for uniform probability density estimates.

Number of slots = 30
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Fig. 4- Relative error proportionality constant versus sample size, for uniform probability density

estimates. Number of slots = 30
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Fig. 5- Relative error versus sample size, for uniform probability density

estimates. Number of slots = 40
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Fig. 6- Relative error proportionality constant versus sample size, for uniform probability density

estimates. Number of slots
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Fig. 7- Relative evror versus sample size, for uniform probability density

estimates, Number of siots
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Fig. 8- Relative error proportionality constant versus sample size, for uniform probability density

estimates. Number of slots = 50

From the plots of & and their comparisons with the theoretical
curves, it is seen that the empirical results, obtained by simulation,
show a good agreement with the theoretical curves. For the plots
of &, V NW , in each case, the mean value of the points was also
calculated and drawn as a straight line parallel to the abscissa.
This would be an average value for the proportionality constant c.
It is seen that in every case the mean value, obtained for ¢, is very
close to unity. It is also seen that the relatively small scatters of &
about the theoretical curves are magnified in the & vV NW plots;
this is due to multiplication by V' N which is relatively large.

Next, independent random variables from a standard Gaussian
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distribution were simulated, with a sample size of 100000 and

ditferent slot sizes. In each case, the following quantity:

2 = [p(n) - p(n)’] NW (23)
p(n)

Which is obtainable from equation (18), was calculated. As
before, p(n) in the estimate of probability desnsity in the n'" slot
and p(n) is the corresponding true value. The quandtity c is
expexted to have an average value of unity for independent
random variables.

The mean square error constant of proportionality , ¢% was
plotted against the slot number, n, and its average value was also
calculated and drawn as a straight line parallel to the abscissa.
This was repeated for different window sizes given by W = 6/Mq ,
as found by equation (14), where M is the number of slots. The
simulation results for Mg equal to 20, 30, 40 and 50 are shown in
Figures 9, 10, 11 and 12 respectively. It can be seen from these
figures that the average values of ¢ are around unity. The scatter
of points about the mean have been magnified due to
multiplication by a large value N.

The average values of ¢* were calculated for M; equal to 20 to
100 in steps of 10. A plot of these against M is shown in Figure
13. The mean of these values, was also calculated which gives

c=(.98.
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Fig. 9- Mean square error proportionality constant versus slot number, for standard normal

density estimates. Number of slots = 20 Sample size = 100 000
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Fig. 10- Mean square error proportionality constant versus slot number, for standard normal

density estimates. Number of slots=30 Sample size=100 000
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Fig. 11- Mean square error proportionality constant versus slot number, for standard normal

density estimates. Number of slots=40 Sample size=100 000
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12- Mean square crror proportionality constant versus slot number, for standard normal

density estimates. Number of slots=50 Sample size=100 000
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v Average for each slot size

- NW — Mean = 0.962
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Fig. 13- Average of mean square error proportionality constant versus the number of slots, for

standard normal density estimates. Sample size=100 000

Moreover, a different sample size of 50000 was also simulated
with M = 50. The plot of c¢® versus the slot number is shown in
Figure 14. Similar observations, as before, can be made from this
figure and the mean value is also seen to be very close to unity.

Finally, in order to demonstrate that ¢ depends on the
autocorrelation function of the data and the sampling period,
Gaussian processes with zero mean, unit variance and known
autocorrelation functions were also considered. The time series
were simulated with different sampling periods, a relatively large
sample size (100000) and, 50 slots were used for the probability

density function estimates. In each case the quantity c2 was
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plotted against the slot number and its mean value was computed
from contributions of different slots.

The random process with autocorrelation function:

R (7)= exp (-1) (24)

Was simulated with time intervals of 0.05 and 0.1. The results
for Ar= 0.05 are shown in Figure 15; the average value of c2 gives
¢ = 2.95. The results corresponding to Az = 0.1 are also displayed
in Figure 16; it gives c=2.18.

The random process with the autocorrelation

function:

R(z)= exp (-7) cos=n7T (25)

Was also simulated, using the same time intervals, as before,
i.e. 0.05 and 0.1. Figure 17 shows the results for Ar= 0.05; the
average value of c2 gives ¢=1.94. Figure 18 also shows the results
tfor Ar= 0.]; giving c=0.97.

The simulations of the correlated data would, therefore,
indicate that the constant 0 depends on the associated

autocorrelation function and sampling period.
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Fig. 14- Mean square error proportionality constant versus slot number, for standard normal

density estimates. Mumber of slots=50 Sample size=50 000
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Fig. 15- Mean square error proportionality constant versus slot number, for random data from
standard normal density and the autocorrelation function:

R(1) = exp(-1), At = 0.05 Number of slots=50 Sample size=100 000
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Fig. 16- Mean square error proportionality constant versus slot number, for random data from
standard normal density and the autocorrelation function:

R(7)= exp (-1), Ar= O.ls Number of slots=50 Sample size=100 000
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Fig. 17- Mean square error proportionality constant versus slot number, for random data from
standard normal density and the autocorrelation function:

R(7)= exp(-t)cos (T), At= 0.05; Number of slots= 50 Sample size=100 000
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Fig. 18- Mean square error proportionality constant versus slot number, for random data from
standard normal density and the autocorrelation {unction:

R(7)= exp (-7) cos( & t), At= 0.1 Number of slots= 50 Sample size=100 000

Discussion ane Concluding Remarks

The statistical errors in the digital estimation of probability
density functions were considered. The estimato error
was :be composed of a random portion and a bias term. The
bias term would depend on the window size and the second
derivative of the probability density function. The error analysis
was applied to the examples of the uniform and standard
Gaussioan density functions. The bias term was seen to be zero
for the former and negligible for the latter; the relative error

could, hence, be represented by the random portion only. That is,
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the root mean square error would reduce to the standard error.

The relative error was found to be inversely proportional to the
square root of the product of sample size, window size and the
probability density function. The constanl of proportionality c. was
theoretically expected to be unity tor independent random
variables and dependent on the autocorrelation and sampling
rate. otherwise.

The inverse proportionality between the error and the window
size would oppose the high resolution requirements. In addition.
the smaller the window size, the less is the bias error. However,
when a high resolution (small window size) is used, the effect on
the error may be compensated by increasing the sample size.

The estimate error was further investigated by simulations on a
digital computer. Independent random variables, from a uniform
distribution, were simulated; this showed a very good agreement
between the errors obtained empirically and those expected
theoretically. The constant ¢ was also seen to be very close to
unity. Independent random variables from a standard Gaussian
distribution were also simulated and, again, the overall average
value obtained for c was close to unity.

Correlated data, with known autocorrelation functions were
also considered; two kinds of Gaussian processes were simulated,
with different sampling periods. The indication was that, for
correlated data, the constant ¢ would depend on the associated

autocorrelation function and sampling period. Consequently, an
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empirical value could not be suggested for c, due to the fact that it
would depend on the autocorreration function, and for a given

autocorrelation, would vary with the sampling period.

APPENDIX A

The Digital Procedure For Probability Density Estimation

In the context of time series analysis, the probability density
function of random data describes the probability that the data
will assume a value within some defined range at any instant of
time. Considering a time series x(t), the probability the x(t)
assumes a value within the range x and (x + Ax) may be obtained
by taking the ratio T/ T, where Ty is the total amount of time
that x(t) falls inside the range (x, x + Ax) during an observation
time T. This ratio will approach an exact probability density as T

approaches infinity. The probability density function p (X) can be

defined as:
p(x)= limBroblx = "g’ =X+ M _ i [ lim :g,— (A1)
Ax—~>o < Ax—=o0 T->o

The qunatity p(x) is always a real - valued, non - negative
function.
However, for the digital estimation of the probability density

function, equation (A.l) may be used to obtain an estimate p(x)as:

P ()= (A2)

Where W is a narrow interval centred at x and Nx is the number

of data values (out of N values) which fall within the range (x-—\g,—x,
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X+ —\;V—). Hence, an estimate p(x) may be evaluated, digitally, by
dividing the full range of x into an appropriate number of equal
width slots and observing the number of data values falling in
each interval. Dividing the observed number by the product of W
and the total sample size, N, yields the estimate p(x). Further

account of this is given in [2].
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