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Modelling and Simulation of Ergodic Data

Nezameddin Faghih‘ » Ph.D.

Abstract

This paper presents the state space modelling and simulation
of ergodic phenomena with known autocorrelation tunctions. The
method 1s based on white noise filteration and for this, the state
space approach to design and representation 1s employed.
Therefore, the continuous filter characteristics and also the
recurrence equations, tor digital computer simulations, can be
derived. The method i1s appled to second order Gaussian
phenomena with a prescribed decaying cosine autocorrelation
function. The discrete data are then simulated, on a digital
computer, by exciting the filters with discrete white noise and
sampling the response. The autocorrelations estimated from the

simulated phenomena are plotted and compared with the truely
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expected values.

Introduction

The simulations of ergodic phenomena with a prescribed
autocorrelation function may be required for a variety of
purposes. However, the desired autocorrelation function should
be capable of representing random data. It 1s known that for zero
mean data, the autocorrelation decays as the time delay increases.
[1]

The generation of linear processes is based on passing white
noise through linear filters. The filter characteristics should be

derived according to the desired autocorrelation function of the
output signal. The differentiul equation modelling of time series 1s
well know and has been discussed In Faghih. [2],{3] -

After obtaining the filter transter function and betore
attempting to simulate on a digital computer, one has usually to
struggle for the derivation of the recurrence equations. The state
space approach presented in this paper, leads to matrix
recurrence equations, suitable for digital computer simulations.

In face , filters are designed in the continuous form, which
when excited with continuous white noise should output the
desired continuous data. When the filters are excited with discrete
white noise, however, the discrete signals with any time spacings
may be obtained by sampling the response. The martix recurrence

equations for digital computer simulations are, hence, derived. -
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The method is applied to generate a second order Gaussian
process with a decaying cosine autocorrelation function. Samples
of realizations are shown. The estimates of the autocorrelation

functions, obtained from the simulated data, are also shown and

compared with the expected functions.

Generation of White Ergodic Data

Theoretically , white noise is a random process whose
autocorrelation is zero everywhere, except at zero time delay; its
power spectrum is also constant for all frequency range. The
second property justifies the term ’ white noise’ by analogy with

the optical spectrum of white light.

Most of the computer languages and even some desk
calculators include algorithms or functions tor generation of
random sequences, in the range (0,1) , with a uniform probability
distribution. Today, the most successtul generation of these
sequences is according to the multiplicative congruential method

[4]. In this metod, the two following multiplicative sequences are

generated:
X4 = ax, (Mod - M) (1)
Yre1 = DY; (Mod - M) (2)

where Mod-M stands for Modulo-M, implying that x_,, and y,,,
are the remainders of the integer division of ax. and by, ,

respectively, by M. A sequence of random numbers, U ; 1s then

formed in the range (0,1) , using:
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U.., = Fraction [(x..; + Y., )/M] (3)

a,b and M are constants and fraction (...) denotes that the

quantities inside the brackets are divided by M and the integer
part is taken away; 1.e. the fraciion part 1s only used.[4]

The following constants, used for a, b and M, can give a very

long sequence of 10 random numbers, before the same

sequence 1s repeated: [J]
a=35 | b:=5 , M= 2%

The seed number for the start of the sequence, (X, Y,), can
also be chosen as a seven digit number, containing numbers 1 to 7
in any order. {5]

White noise generation, with desired probability density
tunction, 1s wusually approached using the uniform random
sequence, U, as a basis. For example, to obtain a Gaussian

random sequence, the method ot Box and Muller [6] may be

used:
2
w., = (-21n U_)?% cos (27 U) (4)
2
w, = (-2In U, ) 2 sin (27 U)) (5)

The sequence W, forms a standard Gaussian (zero mean and
unit variance) white noise [5], [7]. If Gaussian white noise Z, with
arbitrary mean (u) and variance (0°) is required, then the

following transtormaion can be applied:
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Z =0w. + u (6)

Modelling and Simulation of Ergodic Data

Ergodic data with certain prescribed autocorrelation functions
(or power spectra) may be simulated by passing white noise
through linear filters. A linear ftilter (or system) is the physical
realization of a linear differential (or in discredte case, difference)
equation. The simulated process 1s, hence, ettectively represented
by a difterential or ditference equation, being obtainable tor the
known linear filter characteristics. [7]

Consider a linear filter with the Laplace transter tunction G(s),
or frequence response G() w), where the Laplace operator s 1s
replaced by j w; w being the circular trequency and j 1s the
complex number V-1 . It can be shown [7] that the following
relationship holds between the i1nput and output spectral
densities:

S,(w) =G (Jw) G (jjw) S, (w) (7)
where S, (w) and S (w) are the input and output signal spectral
densities, repectively. G (-jw) is the complex conjugate of (j w)
and, hence, G(j w)G(- w) is |G(j w)|* which is a real quantity.

The input signal can be chosen as a zero mean, unit variance

white noise, for which:
S,(w) = 1 (8)
Equation (7) will, theretore, give:
S,(w) =G (jw) G (jw) = |G([jw)l|* (9)
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Equation (9) suggests an approach, as well as himitation, to
generating ergodic data with a prescribed autocorrelation function
(or spectal density). It the =rgodic data i1s required to have an
autocorrelation tunction R( 7 ), its (mathematical, two sided)
spectral density S,(w) can be tound by Fourier transformation of
R( 7 ), [1]; 1e.

0""1

S,(w) = J ]( ) exp (jw 7)) dt ' ; (10)

- Q0

This spectral density has to be factorized into complex
conjugate terms to obtain the required filter frequency response
G(j w), or equivalently a function G(j w) has to be found such
that |G(j w)|? equals Sy(w. It is shown [8] that a linear filter
design is possible only it 5 (w) is a rational function in terms of
w?; ie. if Sy(w) 1s expressible as a quotient of two polynomials
including even powers ot w only. If a power spectrum, which may
have been obtained experimentally tor example, does not meet
this requirement, it has to be approximated by a rational function
of w? Laning and Battin [8] have discussed methods of obtaining
a least-square approximate in such situatioins. The examination of
non-linear filter design shows that similar limitations would apply
to this 19]. For a non - linearity , however, an additional problem
1s also imposed. That 1s, while lnear systems preserve the

probability density ot the inpiut signal, non linear systems do not.

It seems that, the design ot a filter tor an arbitrary prescribed
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power spectrum 1s not yet possible. [7].

However, when the required linear filter frequency response,
Sy(w), is obtainable, jw may be replaced by the Laplace operator
s to give the filter transter tunction, G(s), [10].

Then from the transfer function, G(s), the recurrence
equations for simulation on a digital computer can be obtained.
The state space approach to this will be presented in the next

section.

State Space Approach
The Laplace transfer tunction of the required linear filter is
generally expressible as a quotient of two polynomials 1n terms of

powers of the Laplace operator s, [8]; 1. e., as:

S
C,,. + C. i + ... + C,

G¢8) = — (11)
s" + a_ Sni .. + a,

The system represented by the above transter function, can be
modelled in the state space torm, by the following matrix
differential equations [10],

x = Ax + bu (12)

y = X (13)
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where x is the state vector, u is the input to the system, y is the

system output and the system matrix A is in the companion form,

1.e.,
0 1 0 0
0 0 1 0
TN I e e (14)
0 0 0 1
I DL B .
0
O
b= : (15)
— 1
c=[c, ¢ ¢ .. c, 0 0.. 0] (16)

For a system of order n, as in equation (11), A is also a square
matrix of order n and vectors b and ¢ each contain n elements.
It can be shown [11], that the digital computer solution to
equations (12) and (13) would appear as following recurrence
equations:
x(kT) = G(Dx [(k-1) T] + H (T [(k-1) T]  (17)

y(kT) = cx (kT) (18)
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where T is the sampling period, k is an integer and matrices G(T)
and H(T) follow: o . -

G(T) = eAl (19)
H(T) = [f% e*d]b (20)

Making use of the following eigen - transformations [10],

e’ = WeM W (21
equations (19) and (20) will lead to: . _
GTMy=Wow (22)
H(T) = WA (¢-) Wb (23)
where:
b = et - (24
A = diag {A, A, ..., A} (25)

for distinct eigenvalues 4, 4,, ....., A, of system matrix A. For the
case of mutiple eigenvalues, equivalently, Jordan canonical form
can instead be used. The eigenvector matrix W is the matrix with
columns as the corrosponding eigenvectors, ie. '

W=[w,:w:..w,] (26

Where w; are eigenvectors of the system.matrix A. Matrix I 1s
also the unity matrix. . , _
- Substituting from equations (22) and (23), would yield
equations (17) and (18) as: o
Cx(k) =W Wix (k1) + WA (¢ - 1) W bu(k-1) (27)
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y(k) = cx(k)

Where x(k) and y(k) are the same as x(kT) and y(kT),
correspondingly, implying sample values at times KT. It is

Interesting to note that [10],

11 i _ -
1 ¢ e
= Ulag l).] ;{2 ln) (29)
b = erT = diag [M'T, AT, .., AT} (30)

which makes the digital computer simulation of equations (27)
and (28) an easy task. Using discrete white noise as the input
u(k), the desired random precess y(k) can be generated by
equations (17) and (28). This will be further illustrated by

introducting a numerical example in the next section.

Numerical Example:
Second Order Gaussian Phenomena

As a numerical example, consider a second order Gaussian
proces with the following autocorrelation function:

R(t)=e Tcosmr (31)

Substituting equation (31) in equation (10) and integraing, will

yield:.

2[(1+ 7%) + w?]
S(W) = oo
[14+ (7 + w)?] [1 + (7 - w)?]
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This can be factorized into complex conjugate terms as:
S, (w) = V2 (V1+ 7% + jw) V2 (V1+ 72 - jw) (33)
T [+ 22+ (w)] + 2Gw)  [1+ 7 + (Gw)F] + 2(5w)

Comparison of equations (33) and (9) gives:

V2 (V1+ 7% + jw)
Gw) = —— (34)
[1+ 7% + (jw)?] + 2(jw)
Replacing jw by the Laplace operator s, will render the

required filter transter function as:

N TR TS

o) s + 2s + (1+ 7°) (32)

It is observed that the above transfer function represents a
second order system. Comparing equations (35) and (11), shows
that the above system may be represented in the state space form

according to equations (12) and (13), where,

0 _ 1

A (36)
-1-774 2
()

b= , c= [V 2(1+7%) V2] (37)
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For matrix A in equation (30), the eigenvalues are computed as:
hp=-1%ja (38)
which can be substituted in equations (29), (30) and then in
equation (27). It 1s then proceeded to compute the corresponding
eigenvectors 1n order to determine the eigenvector martrix W and
its inverse W' | for substitution into equation (27). The discretc
values of Gaussian white: noise can also be obtained from
euqationa (4) and (5) and then used for u(k) in eugation (27).

Finally the discrete values of the required second order
Gaussian process, y(k) , may be computed from equation (28), by
using the values in equation (37) and x(k) as obtained from
equation (27). The discretc values of Gaussian white noise can
also be obtained tfrom eucations (4) and (5) and then used for
u(k) in euqgation (27).

In order to start the computation, an arbitrary vector may be
assigned to x (0).

It should be noted that the discrete process, y(k), is sampling of
the corresponding continuous process at time intervals of T, as
chosen and used in equation (30). As numerical examples, the
process was simulated, on a digital computer, with T=0.05 and
T= 0.1 seconds. A realization of the process is shown for each
case In Figures 1 and 2. Further, samples of 30000 values of the
discrete process was simulated, to estimate the autocorrelation
functions. For both cases, the estimated autocorrelation

coetticients are shown and compared with the true function in
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Figure 1- The random data with autocorrelation function:
R(r) = exp (-T) cos (JTT),
simulated with a time interval AT = 0.05
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| Figure 2- The random data with autocorrelation function:
R() = exp (-T) cos (JTT),

simulated with a time interval A‘L’ = (.1



il o o 0> N o b ) N A S

Bl W ¢ IR N E & i et : 4 [y il R pank ol

‘Figures 3 and 4, which extibit good agreement of the estimated

coefficients with the true curves.

-1.80_
Figure 3- The random data with autocorrelation function:
R(r) = ex) (-1 cos ('JI'I,'){.AZ-':: 0.05
sample size: N = 30000
Conclusion B

This paper has considered the state space modelling ‘and
simulation of random signals with known, or desired,
autocorrelation Functions. The method was based on passing

‘white noise through linear filiters and desigring ‘the filter

characteristics tor a prescribed autocorrelation function. The state
space approach was also employed to obtain a discrete model,
suitable for simulations on digital computers. This was ‘then

examined by attempting to simulate a second order Gaussian
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process with a prescribed decaying cosine autocorrelation

function, which showed to be successful.
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Figure 4- The random data with autocorrelation function:
R(r) = exp (-T) cos (AT), AT= 0.1
sample size: N = 30000
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